

PARTIAL FIRST FLOOR PLAN - MECHANICAL FLOOR PLAN

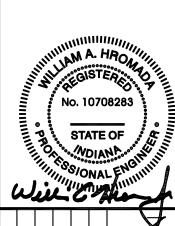
CORPORATION SCHOOL

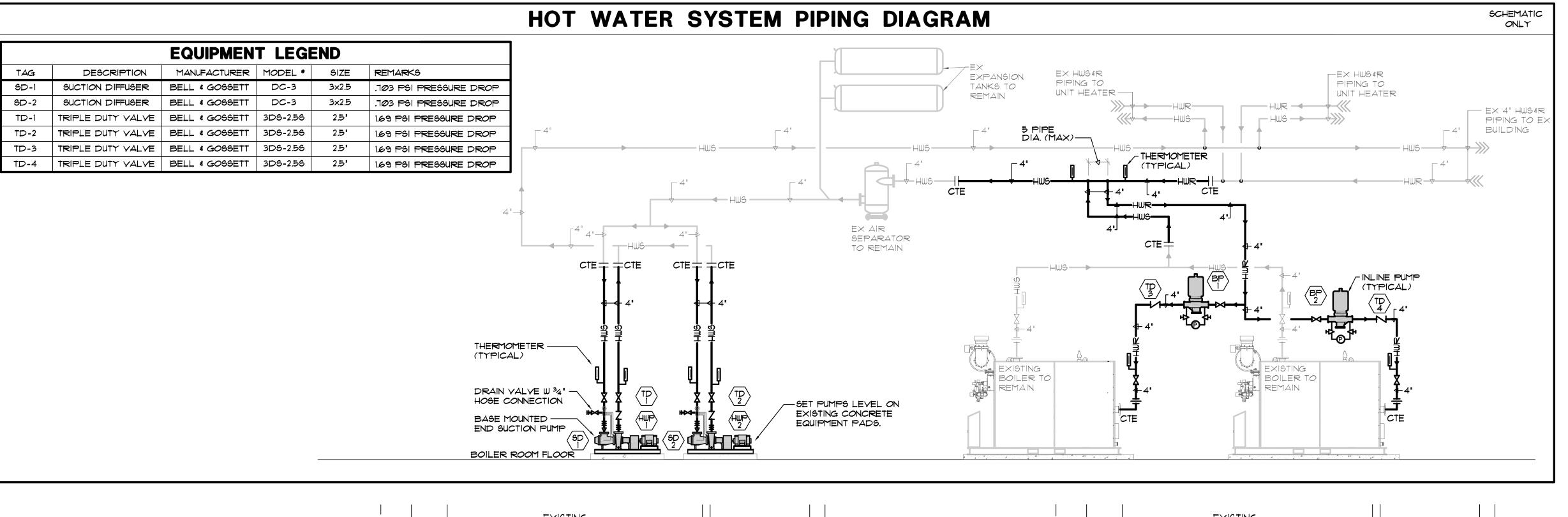
DUNEL 2017 MEC JACKS

SHEET NOTES

1. YAY AIR HANDLING UNITS - MODIFY EXISTING SEQUENCE AS FOLLOWS: (SEE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS.)

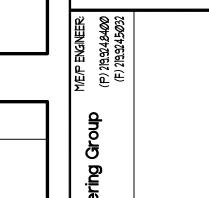
1. STATIC PRESSURE RESET CONTROL FOR VARIABLE AIR VOLUME SYSTEMS IS TO BE PROVIDED TO RESET THE STATIC PRESSURE SETPOINT IN THE DUCTWORK SYSTEM BASED ON THE POSITION OF THE VAY DAMPERS FOR ALL VARIABLE VOLUME BOXES WITHIN THE SYSTEM TO MINIMIZE THE STATIC PRESSURE REQUIRED IN THE SYSTEM.


- B. MODIFY THE EXISTING VAY AIR HANDLING UNITS TO THAT THE SUPPLY AIR TEMPERATURE RESET CONTROL IS TO BE PROVIDED FOR VARIABLE AIR VOLUME SYSTEMS TO RESET THE DISCHARGE SUPPLY AIR TEMPERATURE SETPOINT INVERSELY PROPORTIONAL TO THE OUTSIDE AIR TEMPERATURE. RESET SCHEDULE SHALL BE ADJUSTABLE, WITH INITIAL SCHEDULE OF 55F DISCHARGE AIR SUPPLY TEMPERATURE SETPOINT FOR 50 DEGREES FOUTSIDE AIR TEMPERATURE (AND ABOVE) TO 65F SETPOINT AT ØF OUTSIDE AIR TEMPERATURE.
- C. PROVIDE MORNING WARM UP/COOL DOWN CONTROL FOR YAY AIR HANDLING UNITS: 1. THE WARM UP MODE SHALL BE UTILIZED IN THE HEATING MODE OF OPERATION. THE FMS SHALL DETERMINE THE LENGTH OF TIME NEEDED TO OPERATE IN THE WARM UP MODE.
 - a) THE FMS SHALL DETERMINE REQUIRED DISCHARGE AIR TEMPERATURE AND MODULATE HEATING COIL CONTROL VALVE TO MAINTAIN DISCHARGE AIR TEMPERATURE SET POINT.
 - b) SUPPLY FAN SHALL START AND RUN CONTINUOUSLY.
- c) THE OUTSIDE AIR DAMPERS SHALL BE FULLY CLOSED.
- d) FMS SHALL INDEX SPACE TEMPERATURE SET-POINTS TO OCCUPIED TEMPERATURES FOR VAV BOXES.
- 2. THE COOL DOWN MODE SHALL BE UTILIZED IN THE COOLING MODE OF OPERATION. THE CONTROL SYSTEM SHALL DETERMINE THE LENGTH OF TIME NEEDED TO OPERATE IN THE COOL DOWN MODE.
 - a) SUPPLY FAN SHALL START AND RUN CONTINUOUSLY.
 - b) THE OUTSIDE AIR ECONOMIZER DAMPER SHALL BE FULLY CLOSED AND EXHAUST FAN SHALL BE DISABLED.
 - c) THE UNIT SHALL MODULATE COOLING CAPACITY TO MAINTAIN DISCHARGE AIR TEMPERATURE AT 55 F (ADJ). ECONOMIZER SHALL BE ENABLED TO PROVIDE FREE COOLING AS DETERMINED BY THE DEDICATED OUTSIDE ROOFTOP UNIT
 - d) FMS SHALL INDEX SPACE TEMPERATURE SET-POINTS TO OCCUPIED TEMPERATURES FOR VAV BOXES.


SCHOOL CORPORATION

NICAL RENOVATIONS AT:
ELEMENTARY SCHOOL

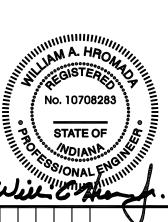
VALPARAISO, IN. 46383



- 1. REMOVE EXISTING HOT WATER DISTRIBUTION PUMP AND ASSOCIATED HOT WATER SUPPLY AND RETURN PIPING, YALVES, CONTROLS, ELECTRICAL POWER CONNECTIONS, ETC. COMPLETE AS REQUIRED.
- REMOVE EXISTING HOT WATER DISTRIBUTION PUMP MOTOR STARTERS AND ASSOCIATED CONTROLS, ELECTRICAL POWER CONNECTIONS, ETC. COMPLETE AS REQUIRED.

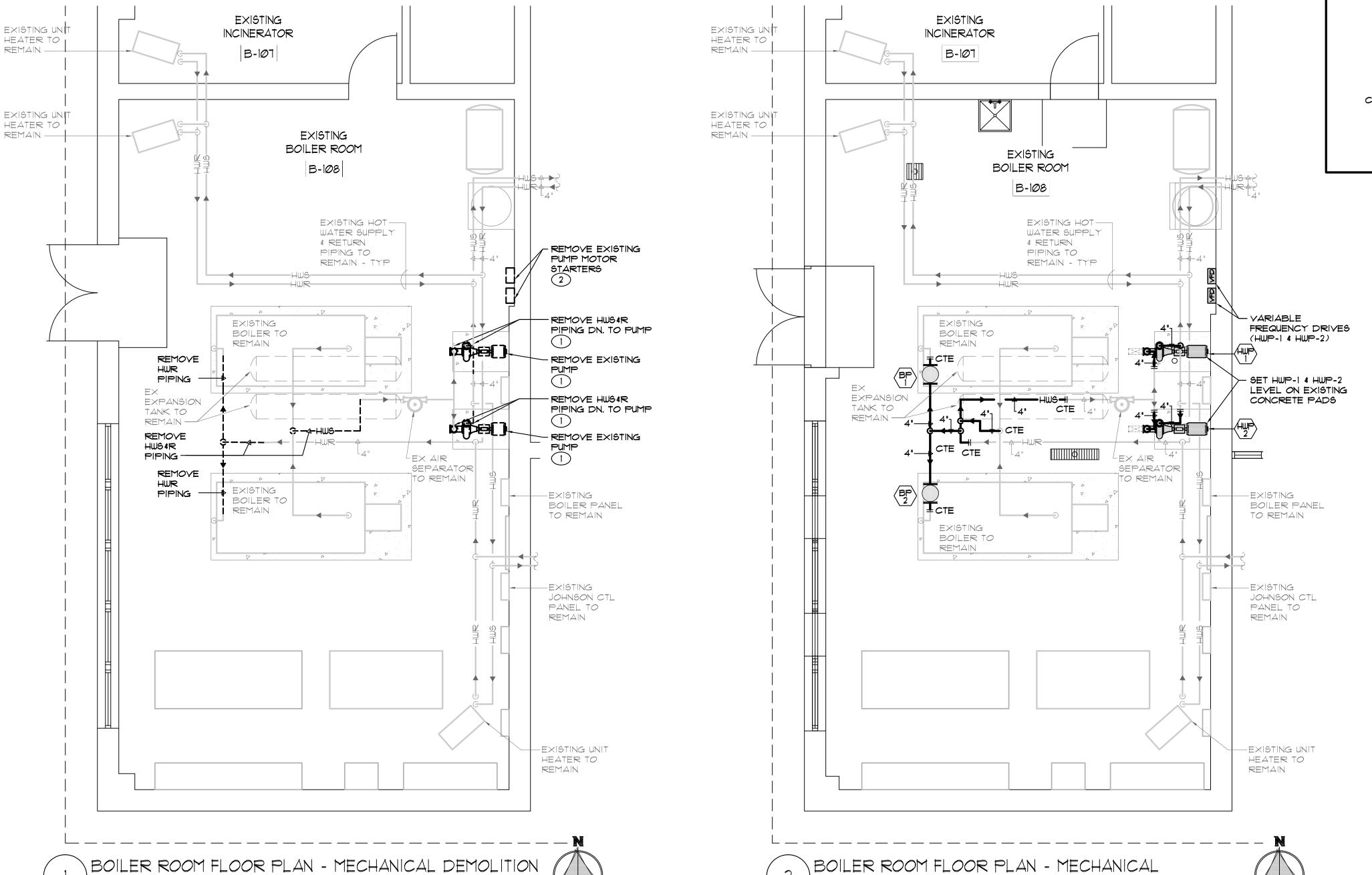
SHEET NOTES

- 1. BOILER PLANT MODIFY EXISTING SEQUENCE AS FOLLOWS: (SEE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS.)
 - A. MODIFY THE EXISTING HEATING COOLING CHANGE OVER TO INDEXING THE HEATING AND COOLING PLANTS FROM HEATING TO COOLING WILL BE ACTIVATED MANUALLY FROM THE BOILER ROOM OR FROM THE FMS WORKSTATION. (NOTE: CHILLER MUST BE FILLED WITH WATER BEFORE INDEXING SYSTEM TO THE COOLING MODE).
 - 1. FMS SHALL ENABLE BOILERS TO OPERATE IN THE WINTER HEATING MODES OF OPERATION. BOILERS SHALL BE ENABLED TO OPERATE IN THE WINTER HEATING MODE OF OPERATION WHEN THE OUTSIDE AIR TEMPERATURE IS BELOW 60 DEGREE F. (ADJ.).
 - 2. BOILERS SHALL BE OFF IN THE SUMMER COOLING MODE.
- B. MODIFY THE EXISTING BOILER SEQUENCED TO MAINTAIN THE PRIMARY BUILDING LOOP WATER TEMPERATURE RESET SCHEDULE: RESET SCHEDULE SHALL BE DETERMINED BY THE FMS AND SHALL BE ADJUSTABLE, WITH INITIAL SCHEDULE OF 180 (ADJ) F LOOP HOT WATER SUPPLY TEMPERATURE SET POINT AT 10 DEGREES FOUTSIDE AIR TEMPERATURE TO 140 (ADJ) DEGREES F SET-POINT AT 60F OUTSIDE AIR TEMPERATURE, PRIMARY LOOP TEMPERATURE SHALL BE SET TO MAINTAIN 180 (ADJ) F WHEN OUTSIDE AIR TEMPERATURE IS BELOW IOF. COORDINATE MINIMUM HOT WATER TEMPERATURE WITH BOILER MANUFACTURER RECOMMENDATIONS. PROVIDE TEMPERATURE SETPOINT RESET OUTPUT TO THE BOILER BURNERS FROM THE LOCAL DDC CONTROLLER.
- C. NEW BOILER CIRCULATING PUMPS SHALL BE CONTROLLED BY THE BOILER CONTROL PANEL. BOILER PUMPS SHALL START ON A CALL FOR THEIR RESPECTIVE BOILER TO FIRE. BOILER PUMPS SHALL RUN FOR 3 MINUTES AFTER BOILER SHUTS DOWN.



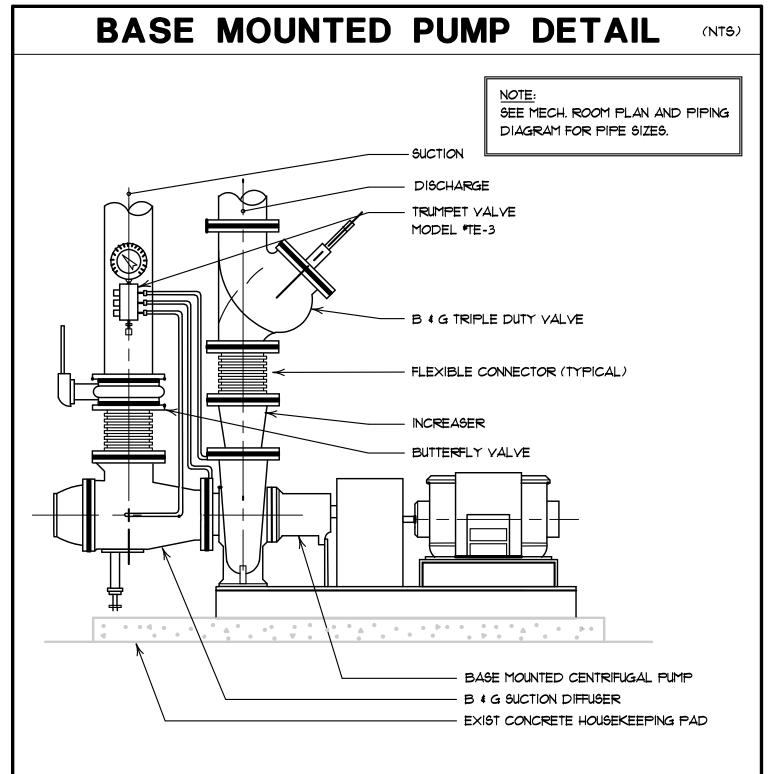
Millies Enginee 9711 VALPARAISO DR #A MUNSTER, INDAWA 46321

AND SCHOOL CORPORATION
HANICAL RENOVATIONS AT:
N ELEMENTARY SCHOOL
E. VALPARAISO, IN. 46383



20

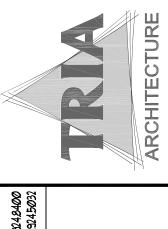
ROOM FLOOR
MECHANICAL

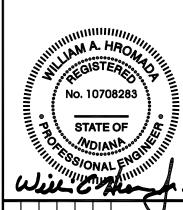

M4.00

	PUMP SCHEDULE													
							PUMP	MOTOR	DATA				SUCTION/	
TAG	MANUFACTURER	MODEL NUMBER	DESCRIPTION	GPM	HEAD	HP	RPM	VOLT	PHASE	HZ.	START	ER BY	DISCHARGE	REMARKS
					(FT.)						MC.	EC.	SIZE	
BP-1	BELL & GOSSETT	SERIES 80: 3 x 3 x 1B	BOILER (B-1) SECONDARY PUMP.	135	20	1.5	1750	480	3	60	×	-	3' / 3'	-
BP-2	BELL & GOSSETT	SERIES 80: 3 x 3 x 1B	BOILER (B-2) SECONDARY PUMP.	135	20	1.5	1750	480	3	60	×	•	3' / 3'	-
HWP-1	BELL & GOSSETT	SERIES 1510 2 BD	HOT WATER PRIMARY CIRCULATION PUMP	135	70	5	1750	480	3	60	×	-	2.5" / 2"	HOT WATER PRIMARY PUMPS W/VFD OPERATING IN PARALLEL. 270 GPM AT 70 FT. HD. WITH DUAL POWER FEEDERS. INSTALL
HWP-2	BELL & GOSSETT	SERIES 1510 2 BD	HOT WATER PRIMARY CIRCULATION PUMP	135	70	5	1750	480	3	60	×	-	2.5" / 2"	WATER PRESSURE SENSORS IN EXISTING HOT WATER SUPPLY PIPING 2/3 DOWNSTREAM FROM BOILER ROOM.

		G	RILLE, R	EGISTER	& DIFFUS	SER SC	CHEDU	LE	
TAG	MANUFACTURER	MODEL NO.	DESCRIPTION	AIR PATTERN	MOUNTING	SIZE	TYPE OF CONTROL	REMARKS	
T1	NAILOR	6145H	TRANSFER AIR GRILLE	LOUVERED GRILLE	LAY-IN PANEL	SEE Plans	-	-	
* ALL DIFF	FUSERS AND REGISTER :				LAT-IN PANEL	PLANS		-	-

	SYMBOLS/A	ABBRE	VIATIONS
<u>SYMBOL</u>	DESCRIPTION	<u>ABBREVIAT</u>	IONS DESCRIPTION
	VAV W/ HOT WATER REHEAT COIL	AH	AIR HANDLING UNIT
\bigcirc	SEE SCHEDULES	В	BOILER
	SHEET NOTE	BP	BOILER PUMP
— <u>4</u> 1115 —	HOT WATER SUPPLY PIPING	CEB	CONCRETE EQUIPMENT BASE
	HOT WATER RETURN PIPING	CFH	CUBIC FEET PER HOUR
	PIPING TO BE REMOVED	CFM	CUBIC FEET PER MINUTE
	EXISTING PIPING	CS	CIRCUIT SETTER
	PIPE TURNED UP	CTE	CONNECT TO EXISTING
·	PIPE TURNED DOWN	DN.	DOWN
-	PIPE EXPANSION	DX	DIRECT EXPANSION
i i	INLINE PUMP	EC	ELECTRICAL CONTRACTOR
ı ı	UNION	₽WT	ENTERING WATER TEMPERATURE
⊗	CIRCUIT SETTER	Ε×	EXISTING
×	SHUT-OFF YALVE	EXH	EXHAUST
Z	CHECK YALYE	FD	FIRE DAMPER
¥	STRAINER	FPM	FEET PER MINUTE
A	PRESSURE REDUCING VALVE	FMS	FACILITY MANAGEMENT SYSTEM
Â	2-WAY AUTOMATIC VALVE	G	NATURAL GAS
ŵ	3-WAY AUTOMATIC VALVE	GPM	GALLONS PER MINUTE
⊡	FLOW SWITCH	1 0	HORSE POWER
4 7	RELIEF VALVE	HWP	HOT WATER PUMP
	GRISWOLD VALVE	HWS	HOT WATER SUPPLY
۵	MANUAL AIR VENT	HWR	HOT WATER RETURN
Q	THERMOMETER	HW	HOT WATER
φ	PRESSURE GAUGE	HZ	HERTZ
·		LWT	LEAVING WATER TEMPERATURE
		MBH	1,000 BTU/HOUR
		MC NC	MECHANICAL CONTRACTOR NORMALLY CLOSED
		NO	NORMALLY OPEN
		NTS	NOT TO SCALE
		0/A	OUTSIDE AIR
		<i>0</i> // l	OUTSIDE AIR INTAKE
		PNL	PANEL
		P61	POUNDS PER SQUARE INCH
		RPM	REVOLUTIONS PER MINUTE
		T/A	TRANSFER AIR
		TC	TEMPERATURE CONTROL
		TSP	TOTAL STATIC PRESSURE
		TYP	TYPICAL
		VAV	VARIABLE AIR VOLUME
		√ FD	VARIABLE FREQUENCY DRIVE
		WPD	WATER PRESSURE DROP




TAG	CFM SETTING		CONTROL SEQUENCE	REMARKS	
	MAX	MIN	OPEN/	OPEN/CLOSED/	
	CFM	CFM	CLOSED	OPEN	
VAV 1-1	1,180	600	-	×	NOTE I.
∀ A ∀ 1-2	1,220	600	×	-	NO CHANGE
VAV 1-3	1,420	700	-	×	NOTE 1.
VAV 1-4	1,420	7ØØ	-	×	NOTE 1.
VAV 1-5	1,420	700	×	-	NO CHANGE
VAV 1-6	1,420	700	-	×	NOTE 1.
VAV 1-7	800	450	-	×	NOTE 1.
VAV 1-8	1,220	600	×	-	NO CHANGE
VA∨ 1-9	1,080	550	-	×	NOTE 1.
VAV 1-10	880	450	-	×	NOTE 1.
VAV 1-11	1,420	700	-	×	NOTE 1.
VA∨ 1-12	1,220	600	-	×	NOTE 1.
VAV 1-13	1,220	600	×	-	NO CHANGE
-	<u> </u>		_	-	-
∀ A ∀ 2-1	1,140	600	×	-	NO CHANGE
∨A∨ 2-2	1,220	600	×	-	NO CHANGE
VAV 2-3	1,220	600	_	×	NOTE 1.
VAV 2-4	1,420	700	_	×	NOTE I.
YAY 2-6	1,080	600	_	×	NOTE I.
YAY 2-7	1,420	700	_	×	NOTE 1.
VAV 2-8	1,420	700	×	-	NO CHANGE
VAY 2-9	1,420	700	-	×	NOTE I.
∨∆∨ 2-1Ø	1,220	600	-	×	NOTE I.
VAV 2-11	1,140	600	×	-	NO CHANGE
✓A∨ 2A	2,255	565	×		NO CHANGE
VAV 2B	1,810	4553	×		NO CHANGE
	9,019	4333	-		-
 ∨∆∨ 3-I	960	48Ø	_	×	NOTE 1.
			<u>-</u>		NOTE 1.
VAV 3-2 -	1,150	575	-	- ×	L-
	100	50			NO CHANGE
VAV 4-1 VAV 4-2	100 370	185	×	<u>-</u>	NO CHANGE
			×	<u>-</u>	NO CHANGE
VΔV 4-3	480	25Ø	×	-	
VAV 4-4	135	75	×	-	NO CHANGE
VAV 4-5	150	120	×	-	NO CHANGE
VAV 4-7	240	120	×	-	NO CHANGE
VAV 4-8	170	100	×	-	NO CHANGE
VAV 4-9	28Ø	140	×	-	NO CHANGE
VAV 4-10	28Ø	140	×	-	NO CHANGE
VAV 4-11	31Ø	160	×	-	NO CHANGE
YAY 4-12	235	120	×	-	NO CHANGE

EXISTING VAV TERMINAL SCHEDULE

NOTE 1:

- VAV BOXES MODIFY EXISTING SEQUENCE THAT SERVE EXTERIOR ZONE AS FOLLOWS:
- NOTE: CONFIRM SPACES THAT YAY BOXES SERVE PRIOR TO MODIFICATIONS.
- (SEE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS.)
- OCCUPIED AND UNOCCUPIED MODES: MODIFY THE EXISTING VAY BOXES THAT SERVE EXTERIOR ZONES TO THE FOLLOWING: I. PROVIDE SEPARATE ADJUSTABLE ROOM TEMPERATURE HEATING AND COOLING
- SET-POINTS FOR EACH VAY BOX FOR HEATING, COOLING, OCCUPIED AND UNOCCUPIED MODES OF OPERATION: COORDINATE SPACE TEMPERATURE SET POINTS FOR HEATING AND COOLING OCCUPIED AND UNOCCUPIED MODES WITH THE SCHOOL DISTRICT.
- 2. UPON A SIGNAL FROM THE FMS FOR THE ASSOCIATED AIR HANDLING UNIT SERVING THE TERMINAL BOX TO START, THE TERMINAL UNIT CONTROLLER SHALL ALSO BE ACTIVATED AND THE UNIT DAMPER SHALL MODULATE OPEN TO MINIMUM POSITION.
- 3. WHEN THE ROOM TEMPERATURE IS BETWEEN HEATING AND COOLING SET-POINTS AS SENSED BY THE ROOM'S THERMOSTAT/SENSOR, THE UNIT DAMPER SHALL BE AT MINIMUM POSITION AND THE HEATING CONTROL VALVE SHALL BE CLOSED.
- 4. UPON A RISE IN ROOM TEMPERATURE ABOVE ROOM TEMPERATURE COOLING SET-POINT, THE UNIT DAMPER SHALL MODULATE OPEN (INCREASING CFM) BETWEEN MINIMUM AND MAXIMUM DAMPER POSITIONS TO MAINTAIN THE OCCUPIED OR UNOCCUPIED ROOM TEMPERATURE SET-POINT. UPON A DECREASE IN ROOM TEMPERATURE, THE REVERSE
- 5. UPON A DROP IN TEMPERATURE BELOW ROOM TEMPERATURE HEATING SET-POINT THE FOLLOWING SHALL OCCUR:
 - a) WHEN IN THE WINTER HEATING MODE OPEN/CLOSED/OPEN: THE HOT WATER YALVE SHALL MODULATE OPEN (UNIT DAMPER REMAINING AT MINIMUM POSITION) TO MAINTAIN ROOM SET-POINT. ON A FURTHER FALL IN ROOM TEMPERATURE THE TERMINAL UNIT DAMPER SHALL MODULATE OPEN TO INCREASE HEATING CFM MAINTAIN ROOM SET-POINT. UPON A RISE IN ROOM TEMPERATURE THE REVERSE SHALL OCCUR.
 - b) WHEN IN THE SUMMER COOLING MODE: DAMPER SHALL REMAIN AT MINIMUM AIRFLOW POSITION. IF SPACE IS UNABLE TO BE MAINTAINED FOR TEN (10) MINUTES AN ALARM SHALL BE SENT TO THE FMS SYSTEM. UPON NOTIFICATION OF THE ALARM, THE OWNER SHALL DETERMINE IF THE HOT WATER HEATING BOILERS SHALL BE ACTIVATED TO INCREASE SPACE TEMPERATURE.

